Highly efficient methane generation from untreated microalgae biomass

نویسندگان

  • Viktor Klassen
  • Olga Blifernez-Klassen
  • Daniel Wibberg
  • Anika Winkler
  • Jörn Kalinowski
  • Clemens Posten
  • Olaf Kruse
چکیده

BACKGROUND The fact that microalgae perform very efficiently photosynthetic conversion of sunlight into chemical energy has moved them into the focus of regenerative fuel research. Especially, biogas generation via anaerobic digestion is economically attractive due to the comparably simple apparative process technology and the theoretical possibility of converting the entire algal biomass to biogas/methane. In the last 60 years, intensive research on biogas production from microalgae biomass has revealed the microalgae as a rather challenging substrate for anaerobic digestion due to its high cell wall recalcitrance and unfavorable protein content, which requires additional pretreatment and co-fermentation strategies for sufficient fermentation. However, sustainable fuel generation requires the avoidance of cost/energy intensive biomass pretreatments to achieve positive net-energy process balance. RESULTS Cultivation of microalgae in replete and limited nitrogen culture media conditions has led to the formation of protein-rich and low protein biomass, respectively, with the last being especially optimal for continuous fermentation. Anaerobic digestion of nitrogen limited biomass (low-N BM) was characterized by a stable process with low levels of inhibitory substances and resulted in extraordinary high biogas, and subsequently methane productivity [750 ± 15 and 462 ± 9 mLN g-1 volatile solids (VS) day-1, respectively], thus corresponding to biomass-to-methane energy conversion efficiency of up to 84%. The microbial community structure within this highly efficient digester revealed a clear predominance of the phyla Bacteroidetes and the family Methanosaetaceae among the Bacteria and Archaea, respectively. The fermentation of replete nitrogen biomass (replete-N BM), on the contrary, was demonstrated to be less productive (131 ± 33 mLN CH4 g-1VS day-1) and failed completely due to acidosis, caused through high ammonia/ammonium concentrations. The organization of the microbial community of the failed (replete-N) digester differed greatly compared to the stable low-N digester, presenting a clear shift to the phyla Firmicutes and Thermotogae, and the archaeal population shifted from acetoclastic to hydrogenotrophic methanogenesis. CONCLUSIONS The present study underlines the importance of cultivation conditions and shows the practicability of microalgae biomass usage as mono-substrate for highly efficient continuous fermentation to methane without any pretreatment with almost maximum practically achievable energy conversion efficiency (biomass to methane).Graphical abstractGrowth condition dependence of anaerobic conversion efficiency of microalgae biomass to methane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Nutrient Removal and Biogas Production by Chlorella Vulgaris Cultures

In aquatic environments, eutrophication causes algal blooms, oxygen depletion, increase in undesired vegetation, loss of plant beds, fish, coral reef and other species. Eventually, the water bodies become unavailable to utilize for agricultural, recreational, industrial and drinking purposes. Discharge of domestic sewage introducing high levels of nutrients to water bodies is one of the main ca...

متن کامل

Methane production from lipid-extracted algal residues

Yan Li, Dongliang Hua , Jie Zhang, Yuxiao Zhao, Hui Mu, Haipeng Xu, Xiaohui Liang, Xiaodong Zhang Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan 250014, China Energy Research Institute of Shandong Academy of Sciences, Jinan 250014, China Abstract: Waste-grown microalgae is a potentially important biomass for wastewater treatment, meanwhile lipid extracted from th...

متن کامل

1 2 Anaerobic digestion of microalgae as a necessary step to make 3 microalgal biodiesel sustainable 4 5

13 14 The potential of microalgae as a source of biofuels and as a technological solution for 15 CO2 fixation is subject to intense academic and industrial research. In the perspective of 16 setting up massive cultures, the management of large quantities of residual biomass and the 17 high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can 18 solve this was...

متن کامل

Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.

The potential of microalgae as a source of biofuels and as a technological solution for CO2 fixation is subject to intense academic and industrial research. In the perspective of setting up massive cultures, the management of large quantities of residual biomass and the high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can solve this waste issue as well a...

متن کامل

Steam explosion pretreatment for enhancing biogas production of Alpine hay

Growing grassland biomass in an extensive way and its subsequent transformation into hay for a further utilization in a biogas-based biorefinery concept could be a solution to increase incomes and maintain the grassland area. In this way, gassland can be promising biomass sources for decentralized energy generation. Efficient biogas production from this lignocellulosic biomass requires a pretre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017